ORCID
Joseph Paulsen: 0000-0001-6048-456X
Document Type
Article
Date
2012
Keywords
emulsions, fluid singularity, algorithm, dispersion, drop coalescence, dynamics, flow, simulation, viscosity
Language
English
Official Citation
The inexorable resistance of inertia determines the initial regime of drop coalescence. JD Paulsen, JC Burton, SR Nagel, S Appathurai, MT Harris, & OA Basaran, Proceedings of the National Academy of Sciences U.S.A. 109, 6857 (2012).
Disciplines
Physics
Description/Abstract
Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering, and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a cross-over region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram.
ISSN
00278424
Recommended Citation
Paulsen, Joseph; Burton, Justin C.; Nagel, Sidney R.; Appathurai, Santosh; Harris, Michael T.; and Basaran, Osman A., "The inexorable resistance of inertia determines the initial regime of drop coalescence" (2012). Physics - All Scholarship. 528.
https://surface.syr.edu/phy/528
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional Information
Additional authors: Justin C. Burton, Sidney R. Nagel, Santosh Appathurai, Michael T. Harris, and Osman A. Basaran.
Proceedings of the National Academy of Sciences allows its authors to archive pre-print, post-print, and publisher's versions after the embargo has expired.