Document Type

Article

Date

4-9-2004

Disciplines

Mathematics

Description/Abstract

This paper contains two theorems concerning the theory of maximal Cohen-Macaulay modules. The first theorem proves that certain Ext groups between maximal Cohen-Macaulay modules M and N must have finite length, provided only finitely many isomorphism classes of maximal Cohen-Macaulay modules exist having ranks up to the sum of the ranks of M and N. This has several corollaries. In particular it proves that a Cohen-Macaulay local ring of finite Cohen-Macaulay type has an isolated singularity. A well-known theorem of Auslander gives the same conclusion but requires that the ring be Henselian. Other corollaries of our result include statements concerning when a ring is Gorenstein or a complete intersection on the punctured spectrum, and the recent theorem of Leuschke and Wiegand that the completion of an excellent Cohen-Macaulay local ring of finite Cohen-Macaulay type is again of finite Cohen-Macaulay type. The second theorem proves that a complete local Gorenstein domain of positive characteristic p and dimension d is F-rational if and only if the number of copies of R splitting out of R1/p^e divided by pde has a positive limit. This result generalizes work of Smith and Van den Bergh. We call this limit the F-signature of the ring and give some of its properties.

Additional Information

This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/math/0404204

Source

Harvested from arXiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.