Document Type
Article
Date
8-10-2004
Disciplines
Mathematics
Description/Abstract
We derive an explicit zero-free region for symmetric square L-functions of elliptic curves, and use this to derive an explicit lower bound for the modular degree of rational elliptic curves. The techniques are similar to those used in the classical derivation of zero-free regions for Dirichlet L-functions, but here, due to the work of Goldfield-Hoffstein-Lieman, we know that there are no Siegel zeros, which leads to a strengthened result.
Recommended Citation
Watkins, Mark, "Explicit Lower Bounds on the Modular Degree of an Elliptic Curve" (2004). Mathematics - All Scholarship. 104.
https://surface.syr.edu/mat/104
Source
Harvested from arXiv.org
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Additional Information
This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/math/0408126