Document Type

Article

Date

2004

Keywords

computer communication networks, security, network architecture and design, wireless communication

Language

English

Disciplines

Digital Communications and Networking

Description/Abstract

Many sensor network applications require sensors’ locations to function correctly. Despite the recent advances, location discovery for sensor networks in hostile environments has been mostly overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile environments. The security of location discovery can certainly be enhanced by authentication. However, the possible node compromises and the fact that location determination uses certain physical features (e.g., received signal strength) of radio signals make authentication not as effective as in traditional security applications. This paper presents two methods to tolerate malicious attacks against range-based location discovery in sensor networks. The first method filters out malicious beacon signals on the basis of the “consistency” among multiple beacon signals, while the second method tolerates malicious beacon signals by adopting an iteratively refined voting scheme. Both methods can survive malicious attacks even if the attacks bypass authentication, provided that the benign beacon signals constitute the majority of the beacon signals. This paper also presents the implementation and experimental evaluation (through both field experiments and simulation) of all the secure and resilient location estimation schemes that can be used on the current generation of sensor platforms (e.g., MICA series of motes), including the techniques proposed in this paper, in a network of MICAz motes. The experimental results demonstrate the effectiveness of the proposed methods, and also give the secure and resilient location estimation scheme most suitable for the current generation of sensor networks.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS