Description/Abstract

This paper considers the problem of prediction in a panel data regression model with spatial autocorrelation in the context of a simple demand equation for liquor. This is based on a panel of 43 states over the period 1965-1994. The spatial autocorrelation due to neighboring states and the individual heterogeneity across states is taken explicitly into account. We compare the performance of several predictors of the states demand for liquor for one year and five years ahead. The estimators whose predictions are compared include OLS, fixed effects ignoring spatial correlation, fixed effects with spatial correlation, random effects GLS estimator ignoring spatial correlation and random effects estimator accounting for the spatial correlation. Based on RMSE forecast performance, estimators that take into account spatial correlation and heterogeneity across the states perform the best for one year ahead forecasts. However, for two to five years ahead forecasts, estimators that take into account the heterogeneity across the states yield the best forecasts.

Document Type

Working Paper

Date

2006

Keywords

prediction, spatial correlation, panel data, liquor demand

Language

English

Series

Working Papers Series

Disciplines

Mathematics

Additional Information

Harvest from RePEc at http://repec.org

Source

Metadata from RePEc

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.