Description/Abstract

This note considers a panel data regression model with spatial autoregressive disturbances and random effects where the weight matrix is normalized and has equal elements. This is motivated by Kelejian et al. (2005), who argue that such a weighting matrix, having blocks of equal elements, might be considered when units are equally distant within certain neighborhoods but unrelated between neighborhoods. We derive a simple weighted least squares transformation that obtains GLS on this model as a simple OLS. For the special case of a spatial panel model with no random effects, we obtain two sufficient conditions where GLS on this model is equivalent to OLS. Finally, we show that these results, for the equal weight matrix, hold whether we use the spatial autoregressive specification, the spatial moving average specification, the spatial error components specification or the Kapoor et al. (2005) alternative to modeling panel data with spatially correlated error components.

Document Type

Working Paper

Date

2006

Keywords

Panel data, spatial error correlation, equal weights, error components

Language

English

Series

Working Papers Series

Disciplines

Mathematics

Additional Information

Harvest from RePEc at http://repec.org

Source

Metadata from RePEc

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.