Description/Abstract

This paper studies the asymptotic properties of standard panel data estimators in a simple panel regression model with error component disturbances. Both the regressor and the remainder disturbance term are assumed to be autoregressive and possibly non-stationary. Asymptotic distributions are derived for the standard panel data estimators including ordinary least squares, fixed effects, first-difference, and generalized least squares (GLS) estimators when both T and n are large. We show that all the estimators have asymptotic normal distributions and have different convergence rates dependent on the non-stationarity of the regressors and the remainder disturbances. We show using Monte Carlo experiments that the loss in efficiency of the OLS, FE and FD estimators relative to true GLS can be substantial.

Document Type

Working Paper

Date

2007

Keywords

Panel data, OLS, Fixed-effects, First-difference, GLS.

Language

English

Series

Working Papers Series

Disciplines

Mathematics

Additional Information

Harvest from RePEc at http://repec.org

Source

Metadata from RePEc

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.