Description/Abstract

This paper considers the problem of hypotheses testing in a simple panel data regression model with random individual effects and serially correlated disturbances. Following Baltagi, Kao and Liu (2008), we allow for the possibility of non-stationarity in the regressor and/or the disturbance term. While Baltagi et al. (2008) focus on the asymptotic properties and distributions of the standard panel data estimators, this paper focuses on test of hypotheses in this setting. One important finding is that unlike the time series case, one does not necessarily need to rely on the “super-efficient” type AR estimator by Perron and Yabu (2009) to make inference in panel data. In fact, we show that the simple t-ratio always converges to the standard normal distribution regardless of whether the disturbances and/or the regressor are stationary.

Document Type

Working Paper

Date

5-2011

Keywords

Panel Data, OLS, Fixed-Effects, First-Difference, GLS, t-ratio

Series

Working Papers Series

Disciplines

Economics

Additional Information

Working paper no. 128

Source

local input

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Economics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.