Date of Award

5-14-2023

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical Engineering and Computer Science

Advisor(s)

Ferdinando Fioretto

Keywords

Computer Science, Constrained Optimization, Machine Learning

Abstract

Achieving fusion of deep learning with combinatorial algorithms promises transformativechanges to AI. Creating an impact in a real-world setting requires AI techniques to span a pipeline from data, to predictive models, to decisions. Aligning these components together requires careful consideration, as having these components trained separately does not account for the end goal of the model. This work surveys general frameworks for melding these components, we focus on the integration of optimization methods with machine learning architectures. We address some challenges and limitations associated with these methods and propose a novel approach to address some of the bottlenecks that arise.

Access

Open Access

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.