ORCID
Joseph Paulsen: 0000-0001-6048-456X
Document Type
Article
Date
2016
Keywords
polymer, compressive strength, elasticity, hydrostatic pressure, rigidity, shear stress, spectral sensitivity
Language
English
Official Citation
Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. JD Paulsen, E Hohlfeld, H King, J Huang, Z Qiu, TP Russell, N Menon, D Vella, & B Davidovitch. Proceedings of the National Academy of Sciences U.S.A. 113, 1144 (2016).
Disciplines
Physics
Description/Abstract
Wrinkle patterns in compressed thin sheets are ubiquitous in nature and technology, from the furrows on our foreheads to crinkly plant leaves, from ripples on plastic-wrapped objects to the protein film on milk. The current understanding of an elementary descriptor of wrinkles—their wavelength—is restricted to deformations that are parallel, spatially uniform, and nearly planar. However, most naturally occurring wrinkles do not satisfy these stipulations. Here we present a scheme that quantitatively explains the wrinkle wavelength beyond such idealized situations. We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity. Understanding how wavelength depends on the properties of the sheet and the underlying liquid or elastic subphase is crucial for applications where wrinkles are used to sculpt surface topography, to measure properties of the sheet, or to infer forces applied to a film.
ISSN
00278424
Recommended Citation
Paulsen, Joseph; Hohlfeld, Evan; King, Hunter; Huang, Jiangshui; Qiu, Zhanglong; Russell, Thomas P.; Menon, Narayanan; Vella, Dominic; and Davidovitch, Benny, "Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets" (2016). Physics - All Scholarship. 529.
https://surface.syr.edu/phy/529
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional Information
Additional authors: E Hohlfeld, H King, J Huang, Z Qiu, TP Russell, N Menon, D Vella, & B Davidovitch.