Document Type

Article

Date

7-29-2014

Keywords

Solar cells, Cadmium telluride, Mobilities

Language

English

Official Citation

APPLIED PHYSICS LETTERS 105, 042106 (2014)

Disciplines

Condensed Matter Physics

Description/Abstract

We report electron and hole drift mobilities in thin film polycrystalline CdTe solar cells based on photocarrier time-of-flight measurements. For a deposition process similar to that used for high-efficiency cells, the electron drift mobilities are in the range of 10–100 cm2/Vs, and holes are in the range of 1–10 cm2/Vs. The electron drift mobilities are about a thousand times smaller than those measured in single crystal CdTe with time-of-flight; the hole mobilities are about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl2; treatment had little effect on the hole drift mobility, but decreased the electron mobility. We are able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in thin film CdTe, but the actual mechanism reducing the mobilities from the single crystal values is not known.

Source

local input

Share

COinS