Document Type

Article

Date

12-9-2008

Language

English

Disciplines

Physics

Description/Abstract

Lattice N=1 super-Yang-Mills theory formulated using Ginsparg-Wilson fermions provides a rigorous non-perturbative definition of the continuum theory that requires no fine-tuning as the lattice spacing is reduced to zero. Domain wall fermions are one explicit scheme for achieving this and using them we have performed large-scale Monte Carlo simulations of the theory for gauge group SU(2). We have measured the gaugino condensate, static potential, Creutz ratios and residual mass for several values of the domain wall separation L_s, four-dimensional lattice volume, and two values of the gauge coupling. With this data we are able to extrapolate the gaugino condensate to the chiral limit, to express it in physical units, and to establish important benchmarks for future studies of super-Yang-Mills on the lattice.

Additional Information

26 pages; v2: fixed sign error in (3.2), corrected tables, added data More information at http://arxiv.org/abs/0810.5746

Source

Harvested from Arxiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Physics Commons

Share

COinS