Document Type
Conference Document
Date
2009
Keywords
amorphous silicon, nanocrystalline silicon
Language
English
Disciplines
Physics
Description/Abstract
Hole drift mobilities in hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) are in the range of 10-3 to 1 cm2/Vs at room-temperature. These low drift mobilities establish corresponding hole mobility limits to the power generation and useful thicknesses of the solar cells. The properties of as-deposited a-Si:H nip solar cells are quite close to their hole mobility limit, but the corresponding limit has not been examined for nc-Si:H solar cells. We explore the predictions for nc-Si:H solar cells based on parameters and values estimated from hole drift-mobility and related measurements. The indicate that the hole mobility limit for nc-Si:H cells corresponds to an optimum intrinsic-layer thickness of 2-3 2m, whereas the best nc-Si:H solar cells (10% conversion efficiency) have thicknesses around 2 2m.
Recommended Citation
"Carrier drift-mobilities and solar cell models for amorphous and nanocrystalline silicon", E. A. Schiff, in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology-2009, edited by A. Flewitt, Q. Wang, J. Hou, S. Uchikoga, A. Nathan (Mater. Res. Soc. Symp. Proc. Volume 1153, Warrendale, PA, 2009), 1153-A15-01.[
Source
harvested from author's c.v.
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.