Document Type

Article

Date

3-11-2003

Language

English

Disciplines

Physics

Description/Abstract

In the presence of a short-distance cutoff, the choice of a vacuum state in an inflating, non-de Sitter universe is unavoidably ambiguous. The ambiguity is related to the time at which initial conditions for the mode functions are specified and to the way the expansion of the universe affects those initial conditions. In this paper we study the imprint of these uncertainties on the predictions of inflation. We parametrize the most general set of possible vacuum initial conditions by two phenomenological variables. We find that the generated power spectrum receives oscillatory corrections whose amplitude is proportional to the Hubble parameter over the cutoff scale. In order to further constrain the phenomenological parameters that characterize the vacuum definition, we study gravitational particle production during different cosmological epochs.

Additional Information

10 two-column pages, 1 figure; uses RevTeX4 More information at http://arxiv.org/abs/hep-th/0303103

Source

Harvested from Arxiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Physics Commons

Share

COinS