Document Type

Working Paper

Date

2007

Keywords

Condensed Matter

Language

English

Disciplines

Physics

Description/Abstract

Smectic orders on curved substrates can be described by differential forms of rank one (1-forms), whose geometric meaning is the differential of the local phase field of density modulation. The exterior derivative of 1-form is the local dislocation density. Elastic deformations are described by superposition of exact differential forms. Applying this formalism to study smectic order on torus as well as on sphere, we find that both systems exhibit many topologically distinct low energy states, that can be characterized by two integer topological charges. The total number of low energy states scales as the square root of the substrate area. For smectic on a sphere, we also explore the motion of disclinations as possible low energy excitations, as well as its topological implications.

Additional Information

4 pages, 3 eps figures, accepted by physical review letters

Source

Metadata from ArXiv.org

Included in

Physics Commons

Share

COinS