Document Type
Working Paper
Date
2007
Keywords
Condensed Matter
Language
English
Disciplines
Physics
Description/Abstract
Smectic orders on curved substrates can be described by differential forms of rank one (1-forms), whose geometric meaning is the differential of the local phase field of density modulation. The exterior derivative of 1-form is the local dislocation density. Elastic deformations are described by superposition of exact differential forms. Applying this formalism to study smectic order on torus as well as on sphere, we find that both systems exhibit many topologically distinct low energy states, that can be characterized by two integer topological charges. The total number of low energy states scales as the square root of the substrate area. For smectic on a sphere, we also explore the motion of disclinations as possible low energy excitations, as well as its topological implications.
Recommended Citation
Xing, Xiangiun, "Topology of Smectic Order on Compact Substrates" (2007). Physics - All Scholarship. 18.
https://surface.syr.edu/phy/18
Source
Metadata from ArXiv.org
Additional Information
4 pages, 3 eps figures, accepted by physical review letters