Document Type
Article
Date
8-19-1998
Language
English
Disciplines
Physics
Description/Abstract
We analyze the tubular phase of self-avoiding anisotropic crystalline membranes. A careful analysis using renormalization group arguments together with symmetry requirements motivates the simplest form of the large-distance free energy describing fluctuations of tubular configurations. The non-self-avoiding limit of the model is shown to be exactly solvable. For the full self-avoiding model we compute the critical exponents using an epsilon-expansion about the upper critical embedding dimension for general internal dimension D and embedding dimension d. We then exhibit various methods for reliably extrapolating to the physical point (D=2,d=3). Our most accurate estimates are nu=0.62 for the Flory exponent and zeta=0.80 for the roughness exponent.
Recommended Citation
Bowick, Mark and Travesset, Alex, "The Tubular Phase of Self-Avoiding Anisotropic Crystalline Membranes" (1998). Physics - All Scholarship. 164.
https://surface.syr.edu/phy/164
Source
Harvested from Arxiv.org
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Additional Information
38 pages, 31 Postscript figures, uses epsf More information at http://arxiv.org/abs/cond-mat/9808214