Document Type
Article
Date
3-13-2007
Language
English
Disciplines
Physics
Description/Abstract
Point defects are ubiquitous in two dimensional crystals and play a fundamental role in determining their mechanical and thermodynamical properties. When crystals are formed on a curved background, finite length grain boundaries (scars) are generally needed to stabilize the crystal. We provide a continuum elasticity analysis of defect dynamics in curved crystals. By exploiting the fact that any point defect can be obtained as an appropriate combination of disclinations, we provide an analytical determination of the elastic spring constants of dislocations within scars and compare them with existing experimental measurements from optical microscopy. We further show that vacancies and interstitials, which are stable defects in flat crystals, are generally unstable in curved geometries. This observation explains why vacancies or interstitials are never found in equilibrium spherical crystals. We finish with some further implications for experiments and future theoretical work.
Recommended Citation
Bowick, Mark; Shin, Homin; and Travesset, Alex, "Dynamics and Instabilities of Defects in Two-Dimensional Crystals on Curved Backgrounds" (2007). Physics - All Scholarship. 148.
https://surface.syr.edu/phy/148
Source
Harvested from Arxiv.org
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Additional Information
9 pages, 11 eps figures, REVTeX More information at http://arxiv.org/abs/cond-mat/0610819