Document Type
Article
Date
6-8-2011
Keywords
condensed matter, soft condensed matter, biological physics
Language
English
Disciplines
Physics
Description/Abstract
We study the spatio-temporal dynamics of a model of polar active fluid in two dimensions. The system exhibits a transition from an isotropic to a polarized state as a function of density. The uniform polarized state is, however, unstable above a critical value of activity. Upon increasing activity, the active fluids displays increasingly complex patterns, including traveling bands, traveling vortices and chaotic behavior. The advection arising from the particles self-propulsion and unique to polar fluids yields qualitatively new behavior as compared to that obtain in active nematic, yielding traveling-wave structures. We show that the nonlinear hydrodynamic equations can be mapped onto a simplified diffusion-reaction-convection model, highlighting the connection between the complex dynamics of active system and that of excitable systems.
Recommended Citation
arXiv:1106.1624v1
Source
harvested from arXiv.org
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Additional Information
This manuscript is from arXiv.org, more information can be found at http://arxiv.org/abs/1106.1624