Document Type







Let B(X) be the algebra of all bounded linear operators on an infinite dimensional complex Banach space X. We prove that an additive surjective map phi on B(X) preserves the reduced minimum modulus if and only if either there are bijective isometries U:X -> X and V:X -> X both linear or both conjugate linear such that phi(T)=UTV for all T in B(X), or X is reflexive and there are bijective isometries U:X* -> X and V:X -> X* both linear or both conjugate linear such that phi(T)=UT*V for all T in B(X). As immediate consequences of the ingredients used in the proof of this result, we get the complete description of surjective additive maps preserving the minimum, the surjectivity and the maximum moduli of Banach space operators.

Additional Information

This manuscript is from, for more information see


Harvested from

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.