Document Type

Article

Date

11-14-2009

Disciplines

Mathematics

Description/Abstract

We show that determinantal varieties defined by maximal minors of a generic matrix have a non-commutative desingularization, in that we construct a maximal Cohen-Macaulay module over such a variety whose endomorphism ring is Cohen-Macaulay and has finite global dimension. In the case of the determinant of a square matrix, this gives a non-commutative crepant resolution.

Additional Information

This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/0911.2659

Source

Harvested from arXiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.