Document Type
Article
Date
4-5-2005
Disciplines
Mathematics
Description/Abstract
We show that almost split sequences in the category of comodules over a coalgebra with finite-dimensional right-hand term are direct limits of almost split sequences over finite dimensional subcoalgebras. In previous work we showed that such almost split sequences exist if the right hand term has a quasifinitely copresented linear dual. Conversely, taking limits of almost split sequences over finte-dimensional comodule categories, we then show that, for countable-dimensional coalgebras, certain exact sequences exist which satisfy a condition weaker than being almost split, which we call ``finitely almost split''. Under additional assumptions, these sequences are shown to be almost split in the appropriate category.
Recommended Citation
Chin, William; Kleiner, Mark; and Quinn, Declan, "Local Theory of Almost Split Sequences for Comodules" (2005). Mathematics - All Scholarship. 73.
https://surface.syr.edu/mat/73
Source
Harvested from arXiv.org
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Additional Information
This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/math/0504081