Document Type

Article

Date

8-3-2010

Keywords

tbd

Disciplines

Mathematics

Description/Abstract

The paper establishes the existence of homeomorphisms between two planar domains that minimize the Dirichlet energy. Specifically, among all homeomorphisms f : omega -> omega* between bounded doubly connected domains such that Mod (omega) < Mod (omega*) there exists, unique up to conformal authomorphisms of omega, an energy-minimal diffeomorphism. No boundary conditions are imposed on f. Although any energy-minimal diffeomorphism is harmonic, our results underline the major difference between the existence of harmonic diffeomorphisms and the existence of the energy-minimal diffeomorphisms. The existence of globally invertible energy-minimal mappings is of primary pursuit in the mathematical models of nonlinear elasticity and is also of interest in computer graphics.

Additional Information

This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/1008.0652

Source

Harvested from arXiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.