Document Type

Article

Date

12-20-2006

Disciplines

Mathematics

Description/Abstract

We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel against doubling measures with suitable decay. The differentials of mappings that arise in this way satisfy an isotropic form of the doubling condition. We prove that this isotropic doubling condition is satisfied by the distance functions of certain fractal sets. Finally, we construct an isotropic doubling measure that is not absolutely continuous with respect to the Lebesgue measure.

Additional Information

This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/math/0611110

Source

Harvested from arXiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.