Document Type

Article

Date

5-16-2005

Disciplines

Mathematics

Description/Abstract

For a commutative local ring R, consider (noncommutative) R-algebras lamda of the form lamda = End R(M) where M is a reflexive R-module with nonzero free direct summand. Such algebras lamda of finite global dimension can be viewed as potential substitutes for, or analogues of, a resolution of singularities of Spec R. For example, Van den Bergh has shown that a three-dimensional Gorenstein normal C-algebra with isolated terminal singularities has a crepant resolution of singularities if and only if it has such an algebra lamda with finite global dimension and which is maximal Cohen–Macaulay over R (a “noncommutative crepant resolution of singularities”). We produce algebras lamda = EndR(M) having finite global dimension in two contexts: when R is a reduced one-dimensional complete local ring, or when R is a Cohen–Macaulay local ring of finite Cohen–Macaulay type. If in the latter case R is Gorenstein, then the construction gives a noncommutative crepant resolution of singularities in the sense of Van den Bergh.

Additional Information

This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/math/0505323

Source

Harvested from arXiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.