Title
Pade Interpolation by F-Polynomials and Transfinite Diameter
Document Type
Article
Date
5-3-2011
Disciplines
Mathematics
Description/Abstract
We define F-polynomials as linear combinations of dilations by some frequencies of an entire function F. In this paper we use Pade interpolation of holomorphic functions in the unit disk by F-polynomials to obtain explicitly approximating F-polynomials with sharp estimates on their coefficients. We show that when frequencies lie in a compact set K C C then optimal choices for the frequencies of interpolating polynomials are similar to Fekete points. Moreover, the minimal norms of the interpolating operators form a sequence whose rate of growth is determined by the transfinite diameter of K. In case of the Laplace transforms of measures on K, we show that the coefficients of interpolating polynomials stay bounded provided that the frequencies are Fekete points. Finally, we give a sufficient condition for measures on the unit circle which ensures that the sums of the absolute values of the coefficients of interpolating polynomials stay bounded.
Recommended Citation
Coman, Dan and Poletsky, Evgeny A., "Pade Interpolation by F-Polynomials and Transfinite Diameter" (2011). Mathematics - All Scholarship. 24.
https://surface.syr.edu/mat/24
Source
Harvested from arXiv.org
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Additional Information
This manuscript from arXiv.org, for additional information see http://arxiv.org/abs/1105.0660