Document Type

Article

Date

7-27-2009

Disciplines

Mathematics

Description/Abstract

Ozsvath and Szabo have established an algebraic relationship, in the form of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a link L in S3 and the Heegaard Floer homology of its double-branched cover. This relationship has since been recast by the authors as a specific instance of a broader connection between Khovanov- and Heegaard Floer-type homology theories, using a version of Heegaard Floer homology for sutured manifolds developed by Juhasz. In the present work we prove the naturality of the spectral sequence under certain elementary TQFT operations, using a generalization of Juhasz's surface decomposition theorem valid for decomposing surfaces geometrically disjoint from an imbedded framed link.

Additional Information

This manuscript is from arXiv.org, for more information see http://arxiv.org/abs/0907.4378

Source

Harvested from arXiv.org

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.