Document Type

Article

Date

1995

Keywords

locally stratified programs, hyperarithmetic set

Language

English

Disciplines

Computer Sciences

Description/Abstract

This paper completes an investigation of the logical expressibility of finite, locally stratified, general logic programs. We show that every hyperarithmetic set can be defined by a suitably chosen locally stratified logic program (as a set of values of a predicate over its perfect model). This is an optimal result, since the perfect model of a locally stratified program is itself an implicitly definable hyperarithmetic set (under a recursive coding of the Herbrand base); hence to obtain all hyperarithmetic sets requires something new, in this case selecting one predicate from the model. We find that the expressive power of programs does not increase when one considers the programs which have a unique stable model or a total well-founded model. This shows that all these classes of structures (perfect models of locally stratified logic programs, well-founded models which turn out to be total, and stable models of programs possessing a unique stable model) are all closely connected with Kleene’s hyperarithmetical hierarchy. Thus, for general logic programming, negation with respect to two-valued logic is related to the hyper- arithmetic hierarchy in the same way as Horn logic is to the class of recursively enumerable sets. In particular, a set is definable in the well-founded semantics by a program P whose well-founded partial model is total iff it is hyperarithmetic.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.