Document Type

Article

Date

1994

Keywords

neural networks, load balancing, nodes, load balancing algorithms

Language

English

Disciplines

Computer Sciences

Description/Abstract

This paper presents a new approach that uses neural networks to predict the performance of a number of dynamic decentralized load balancing strategies. A distributed multicomputer system using any distributed load balancing strategy is represented by a unified analytical queuing model. A large simulation data set is used to train a neural network using the back–propagation learning algorithm based on gradient descent. The performance model using the predicted data from the neural network produces the average response time of various load balancing algorithms under various system parameters. The validation and comparison with simulation data show that the neural network is very effective in predicting the performance of dynamic load balancing algorithms. Our work leads to interesting techniques for designing load balancing schemes (for large distributed systems) that are computationally very expensive to simulate. One of the important findings is that performance is affected least by the number of nodes, and most by the number of links at each node in a large distributed system.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.