Document Type
Article
Date
1994
Keywords
neural networks, load balancing, nodes, load balancing algorithms
Language
English
Disciplines
Computer Sciences
Description/Abstract
This paper presents a new approach that uses neural networks to predict the performance of a number of dynamic decentralized load balancing strategies. A distributed multicomputer system using any distributed load balancing strategy is represented by a unified analytical queuing model. A large simulation data set is used to train a neural network using the back–propagation learning algorithm based on gradient descent. The performance model using the predicted data from the neural network produces the average response time of various load balancing algorithms under various system parameters. The validation and comparison with simulation data show that the neural network is very effective in predicting the performance of dynamic load balancing algorithms. Our work leads to interesting techniques for designing load balancing schemes (for large distributed systems) that are computationally very expensive to simulate. One of the important findings is that performance is affected least by the number of nodes, and most by the number of links at each node in a large distributed system.
Recommended Citation
Ahmad, Ishfaq; Ghafoor, Arif; Mehrotra, Kishan; Mohan, Chilukuri K.; and Ranka, Sanjay, "Performance modeling of load balancing algorithms using neural networks" (1994). College of Engineering and Computer Science - Former Departments, Centers, Institutes and Projects. 34.
https://surface.syr.edu/lcsmith_other/34
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.