Document Type
Article
Date
1998
Keywords
programming language, language definition, interpreter, lambda calculus, applicative language, high-order function, closure, order of application, continuation, LISP, GEDANKEN, PAL, SECD machine, J-operator, reference, 25th ACM National Conference
Language
English
Disciplines
Programming Languages and Compilers
Description/Abstract
Abstract. Higher-order programming languages (i.e., languages in which procedures or labels can occur as values) are usually defined by interpreters that are themselves written in a programming language based on the lambda calculus (i.e., an applicative language such as pure LISP). Examples include McCarthy’s definition of LISP, Landin’s SECD machine, the Vienna definition of PL/I, Reynolds ’ definitions of GEDANKEN, and recent unpublished work by L. Morris and C. Wadsworth. Such definitions can be classified according to whether the interpreter contains higher-order functions, and whether the order of application (i.e., call by value versus call by name) in the defined language depends upon the order of application in the defining language. As an example, we consider the definition of a simple applicative programming language by means of an interpreter written in a similar language. Definitions in each of the above classifications are derived from one another by informal but constructive methods. The treatment of imperative features such as jumps and assignment is also discussed.
Recommended Citation
Reynolds, John C., "Definitional interpreters for higher-order programming languages" (1998). College of Engineering and Computer Science - Former Departments, Centers, Institutes and Projects. 13.
https://surface.syr.edu/lcsmith_other/13