Conference Editor
Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer
Location
Syracuse, NY
Event Website
http://ibpc2018.org/
Start Date
25-9-2018 3:15 PM
End Date
25-9-2018 5:00 PM
Description
Applications of PCM-to-air heat exchangers (PAHXs) were discussed in literature for free cooling application due to their latent thermal storage abilities. This paper aims to justify the generalization of a numerical model of PAHX and to compare the thermal performance of two different configurations of PAHX system. A generalized numerical model is developed and validated based on general apparent heat capacity method. The validation results show good agreement of the generalized approach in terms of averaged error with the experimental data. Model potential and limitations are discussed, and further recommendations are proposed to improve model accuracy. The paper ensures the significant potential of a PAHX ventilated façade configuration in free cooling applications.
Recommended Citation
Dardir, Mohamed; El Mankibi, Mohamed; and Haghighat, Fariborz, "PCM-to-Air Heat Exchangers for Free Cooling Applications" (2018). International Building Physics Conference 2018. 7.
DOI
https://doi.org/10.14305/ibpc.2018.ps07
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
PCM-to-Air Heat Exchangers for Free Cooling Applications
Syracuse, NY
Applications of PCM-to-air heat exchangers (PAHXs) were discussed in literature for free cooling application due to their latent thermal storage abilities. This paper aims to justify the generalization of a numerical model of PAHX and to compare the thermal performance of two different configurations of PAHX system. A generalized numerical model is developed and validated based on general apparent heat capacity method. The validation results show good agreement of the generalized approach in terms of averaged error with the experimental data. Model potential and limitations are discussed, and further recommendations are proposed to improve model accuracy. The paper ensures the significant potential of a PAHX ventilated façade configuration in free cooling applications.
https://surface.syr.edu/ibpc/2018/posters/7
Comments
If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.