Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

25-9-2018 3:15 PM

End Date

25-9-2018 5:00 PM

Description

The retrofit design of buildings and districts cannot exclude the occupants’ perspective if comfortable and healthy conditions have to be obtained. For this reason, the NewTREND1 project developed a collaborative platform for the energy efficient buildings and districts retrofit that includes the users’ perspective. Three modules have been developed for thermal comfort, acoustic comfort and behavioural assessment. These modules are integrated into a Simulation and Design Hub that, after gathering data from on-site measurements, builds a simulation model of the district, calculates yearly results and exposes them to the design team through a dedicated District Information Model server and user interfaces. These modules perform deep investigations on the occupants’ sensation and behaviour, based on both measured and simulated datasets and provide comparisons of comfort performances, considering different retrofit scenarios and related uncertainties. In details, the thermal comfort module performs analysis according to both predictive and adaptive models, evaluates the variability around the design conditions together with sensitivity analysis that highlights which parameters are the most critical for the retrofit design. The acoustic module provides a complete tool to predict and assess the indoor acoustic comfort, taking into account the performance of building envelope and the impact of district noise. Finally, the behavioural module empowers the building energy simulation with co-simulation capabilities that reproduces the real occupants’ behaviours in relation to comfort conditions. The final goal of the framework is to support the decision-making process in selecting the optimal retrofit option that achieves the targeted energy efficiency without infringing the occupant’s expectation in terms of comfort and well-being.

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.ps03

Creative Commons License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.

COinS
 
Sep 25th, 3:15 PM Sep 25th, 5:00 PM

A framework for comfort assessment in buildings and districts retrofit process

Syracuse, NY

The retrofit design of buildings and districts cannot exclude the occupants’ perspective if comfortable and healthy conditions have to be obtained. For this reason, the NewTREND1 project developed a collaborative platform for the energy efficient buildings and districts retrofit that includes the users’ perspective. Three modules have been developed for thermal comfort, acoustic comfort and behavioural assessment. These modules are integrated into a Simulation and Design Hub that, after gathering data from on-site measurements, builds a simulation model of the district, calculates yearly results and exposes them to the design team through a dedicated District Information Model server and user interfaces. These modules perform deep investigations on the occupants’ sensation and behaviour, based on both measured and simulated datasets and provide comparisons of comfort performances, considering different retrofit scenarios and related uncertainties. In details, the thermal comfort module performs analysis according to both predictive and adaptive models, evaluates the variability around the design conditions together with sensitivity analysis that highlights which parameters are the most critical for the retrofit design. The acoustic module provides a complete tool to predict and assess the indoor acoustic comfort, taking into account the performance of building envelope and the impact of district noise. Finally, the behavioural module empowers the building energy simulation with co-simulation capabilities that reproduces the real occupants’ behaviours in relation to comfort conditions. The final goal of the framework is to support the decision-making process in selecting the optimal retrofit option that achieves the targeted energy efficiency without infringing the occupant’s expectation in terms of comfort and well-being.

https://surface.syr.edu/ibpc/2018/posters/3

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.