Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

25-9-2018 3:15 PM

End Date

25-9-2018 5:00 PM

Description

Interstitial condensation and water accumulation risk in building envelopes could be assessed with methods and models base d on moisture migration through porous media coupled to heat transfer. One of the difficulties in evaluating the boundary conditions for the heat and mass transfer model is the choice of an appropriate weather file. The most advanced models, described by the standard EN 15026:2007, require the hourly values of rain, wind, radiation, temperature and relative humidity to compute the water content in the porous materials. In this contribution, the method described by the standard EN ISO 15927-4:2005, typically used to design Moisture Reference Years (MRY), has been extended to the design of 34 typologies of representative weather files. The generation criteria have been base d on the assumption that the simulation results are influenced by rain deposition on the considered wall. The procedure has been followed considering 5 different wall exposures that lead to different MRY. The years of the climate of Turin (Italy) between 2002 and 2016 have been considered for the generation of the reference years. Finally, the annual mean moisture contents for two common wall types have been calculated using the obtained MRY and compared to the annual mean moisture contents obtained with the measured weather data, and the effects of the selection of the weather parameters is presented.

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.ps19

Creative Commons License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.

COinS
 
Sep 25th, 3:15 PM Sep 25th, 5:00 PM

Hygrothermal modelling of building enclosures: reference year design for moisture accumulation and condensation risk assessment

Syracuse, NY

Interstitial condensation and water accumulation risk in building envelopes could be assessed with methods and models base d on moisture migration through porous media coupled to heat transfer. One of the difficulties in evaluating the boundary conditions for the heat and mass transfer model is the choice of an appropriate weather file. The most advanced models, described by the standard EN 15026:2007, require the hourly values of rain, wind, radiation, temperature and relative humidity to compute the water content in the porous materials. In this contribution, the method described by the standard EN ISO 15927-4:2005, typically used to design Moisture Reference Years (MRY), has been extended to the design of 34 typologies of representative weather files. The generation criteria have been base d on the assumption that the simulation results are influenced by rain deposition on the considered wall. The procedure has been followed considering 5 different wall exposures that lead to different MRY. The years of the climate of Turin (Italy) between 2002 and 2016 have been considered for the generation of the reference years. Finally, the annual mean moisture contents for two common wall types have been calculated using the obtained MRY and compared to the annual mean moisture contents obtained with the measured weather data, and the effects of the selection of the weather parameters is presented.

https://surface.syr.edu/ibpc/2018/posters/19

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.