Conference Editor
Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer
Keywords:
Historical building, microclimate, conservation strategy, dynamic simulation
Location
Syracuse, NY
Event Website
http://ibpc2018.org/
Start Date
24-9-2018 10:30 AM
End Date
24-9-2018 12:00 PM
Description
In this work a method is proposed to estimate the effect of indoor microclimate on the risk of degradation of ancient materials stored in historical buildings. The method, which combines microclimate observations and dynamic simulation, has shown to be strategic in preventive conservation of historical buildings. Indeed, once the building model is calibrated, it can be effectively used for evaluating the microclimate control solutions on the conservation reducing general degradation risks. The method has been applied to a historical building close to Rome, where deteriorations in ceilings occurred and visitors complain about thermal discomfort. First, the HVAC system in the model has set in order to guarantee both thermal comfort and adequate condition for the conservation of the material. Then, the crack width of wooden ceiling has been estimated by means of an empirical model based on indoor temperature and relative humidity data and validated with the measurements of the crack width. It was found a reduction of annual variation from 0.4 mm to 0.2 mm, experimented by panels, and an improvement of maximum daily variation, especially in winter and summer (less than 0.01 mm on average).
Recommended Citation
Frasca, Francesca; Cornaro, Cristina; and Siani, Anna Maria, "A method for an effective microclimate management in historical buildings combining monitoring and dynamic simulation: the case of “Museo Archeologico di Priverno”" (2018). International Building Physics Conference 2018. 1.
DOI
https://doi.org/10.14305/ibpc.2018.ie-1.01
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
A method for an effective microclimate management in historical buildings combining monitoring and dynamic simulation: the case of “Museo Archeologico di Priverno”
Syracuse, NY
In this work a method is proposed to estimate the effect of indoor microclimate on the risk of degradation of ancient materials stored in historical buildings. The method, which combines microclimate observations and dynamic simulation, has shown to be strategic in preventive conservation of historical buildings. Indeed, once the building model is calibrated, it can be effectively used for evaluating the microclimate control solutions on the conservation reducing general degradation risks. The method has been applied to a historical building close to Rome, where deteriorations in ceilings occurred and visitors complain about thermal discomfort. First, the HVAC system in the model has set in order to guarantee both thermal comfort and adequate condition for the conservation of the material. Then, the crack width of wooden ceiling has been estimated by means of an empirical model based on indoor temperature and relative humidity data and validated with the measurements of the crack width. It was found a reduction of annual variation from 0.4 mm to 0.2 mm, experimented by panels, and an improvement of maximum daily variation, especially in winter and summer (less than 0.01 mm on average).
https://surface.syr.edu/ibpc/2018/IE1/1
Comments
If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.