Date of Award

December 2017

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mechanical and Aerospace Engineering

Advisor(s)

Jeongmin Ahn

Second Advisor

Weiwei Zheng

Keywords

Air separation unit, Carbon Capture, Methane Combustion, Oxy-fuel combustion, Oxygen transport membranes

Subject Categories

Engineering

Abstract

This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion.

SrSc0.1Co0.9O3-δ (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC’s oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-δ (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM’s oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion.

The findings from this research show that under a wide range of membrane temperatures and in a variety of atmospheres, a pure SSC OTM can achieve superior surface exchange and oxygen chemical diffusion coefficients compared to other commonly studied materials. SSC’s high oxygen permeability (>1 ml.min-1.cm-2) demonstrates the material’s candidacy for the application of oxy-fuel combustion. However, in the presence of rich CO2 atmospheres, SSC shows mechanical and chemical instabilities due to the carbonate formation on the perovskite structure. The addition of SDC in the membrane composition produces a dual-phase OTM which is observed to improve the oxygen permeation flux when subjected to pure CO2 sweeping gases. When subjected to pure methane sweeping gases, dual-phase OTM compositions exhibits lower oxygen permeability compared to the single-phase SSC OTM. Despite the decline in the oxygen permeation flux, some dual-phase compositions still exhibit a high oxygen permeability, indicating their potential for the application of oxy-fuel combustion. Furthermore, a newly developed method for evaluating OTMs for the application of oxy-fuel combustion is presented in a portion of this work. This new method calculates key components such as the average oxygen permeation flux, approximate effective surface area, and the impact of additional recirculated exhaust into the incoming sweeping gas to provide a detailed understanding of OTM’s application for oxy-fuel combustion. The development of this approach will aid in the evaluation of newly developed materials and create a new standard for implementing OTMs for the application of oxy-fuel combustion.

Access

Open Access

Included in

Engineering Commons

Share

COinS