Date of Award
August 2017
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Physics
Advisor(s)
Duncan Brown
Subject Categories
Physical Sciences and Mathematics
Abstract
In this dissertation we study gravitational-wave data analysis techniques for binary neutron star and black hole mergers. During its first observing run, the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) reported the
first, direct observations of gravitational waves from two binary black hole mergers. We present the results from the search for binary black hole mergers which unambiguously detected the binary black hole mergers. We determine the effect of calibration
errors on the detection statistic of the search. Since the search is not designed to precisely measure the astrophysical parameters of the binary neutron star and black hole mergers, we use Bayesian methods to develop a new parameter estimation analysis.
We demonstrate the performance of the analysis on the binary black hole mergers detected during Advanced LIGO’s first observing run. We use the parameter estimation analysis to assess the ability of gravitational-wave observatories to observe a gap
in the black hole mass distribution between 52 M and 133 M due to pair-instability supernovae. Finally, we use simulated signals added to the Advanced LIGO detectors to validate the search and parameter estimation analyses used to publish the
detection of the astrophysical events.
Access
Open Access
Recommended Citation
Biwer, Christopher Michael, "The detection and parameter estimation of binary black hole mergers" (2017). Dissertations - ALL. 791.
https://surface.syr.edu/etd/791