Date of Award

10-5-2017

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Chemistry

Advisor(s)

Tara Kahan

Keywords

Environmental Solutes;Ice;Ice Surfaces;PAHs;Photolysis;Raman

Subject Categories

Chemistry | Physical Sciences and Mathematics

Abstract

The reaction environments present in water, ice, and at ice surfaces are physically distinct from one another and studies have shown that photolytic reactions can take place at different rates in the different media. Kinetics of reactions in frozen media are measured in snow and ice prepared from deionized water. This reduces experimental artifacts, but is not relevant to snow in the environment, which contains solutes. We have monitored the effect of nonchromophoric (will not absorb sunlight) organic matter on the photolytic fate of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene, pyrene, and anthracene in ice and at ice surfaces. Nonchromophoric organic matter reduced photolysis rates to below our detection limit in bulk ice, and reduced rates at ice surfaces to a lesser extent due to the PAHs partially partitioning to the organics present. In addition, we have monitored the effect of chromophoric (will absorb sunlight) dissolved organic matter (cDOM) on the fate of anthracene in water, ice, and ice surfaces. cDOM reduced rates in all three media. Suppression in liquid water was due to physical interactions between anthracene and the cDOM, rather than to competitive photon absorbance. More suppression was observed in ice cubes and ice granules than in liquid water due to a freeze concentrating effect. Sodium Chloride (NaCl) is another ubiquitous environmental solute that can influence reaction kinetics in water, ice, and at ice surfaces. Using Raman microscopy, we have mapped the surface of ice of frozen NaCl solutions at 0.02M and 0.6M, as well as the surface of frozen samples of Sargasso Sea Water. At temperatures above and below the eutectic temperature (-21.1°C). Above the eutectic, regions of ice and liquid water were observed in all samples. Liquid regions generally took the form of channels. Channel widths and fractional liquid surface coverage increased with NaCl concentration and temperature. Volume maps of the three samples at temperatures above the eutectic point, showed that liquid channels were distributed throughout the ice sample. Liquid fractions were similar at ice surfaces and in the bulk at depths of at least 80 µm.

Access

Open Access

Included in

Chemistry Commons

Share

COinS