Date of Award
11-29-2022
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Physics
Advisor(s)
Franck, John
Second Advisor
Plourde, Britton
Keywords
Continuous Decoupling, Dynamical Decoupling, Quantum Computing, Spin locking, Superconducting Qubits, Transmon
Subject Categories
Quantum Physics
Abstract
Decoherence is the primary limiting factor for the utility of modern qubits and qubit networks; most chiefly, pure dephasing which limits the operational time any gate-sequence can produce a high-fidelity result. In this dissertation, I present the results of my experiment, performing fast, high fidelity, universal single-qubit gates, on a qubit which has been decoupled from pure dephasing resulting from environmental noise. This technique can expand operational ranges of qubits–such as allowing the high-coherence operation of a flux-tunable qubit far away from its flux-insensitive sweet-spot; broadening our selection of viable qubits by making otherwise low-coherence qubits operable with high coherence, or improving the coherence of higher order quantum networks which have limited coherence time due to qubit to qubit interactions producing prohibitive amounts of pure dephasing. This technique could be performed on any deterministic qubit of any modality which can receive drives of a physically similar kind as my particular test-platform, the superconducting transmon.
Access
Open Access
Recommended Citation
Senatore, Michael, "High Fidelity Universal Gates Performed on a Continuously-Decoupled Coherence Enhanced Transmon Qubit" (2022). Dissertations - ALL. 1602.
https://surface.syr.edu/etd/1602