Date of Award

Summer 7-1-2022

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

School of Information Studies

Advisor(s)

Yu, Bei

Subject Categories

Library and Information Science | Social and Behavioral Sciences

Abstract

Health advice – clinical and policy recommendations – plays a vital role in guiding medical practices and public health policies. Whether or not authors should give health advice in medical research publications is a controversial issue. The proponents of "actionable research" advocate for the more efficient and effective transmission of science evidence into practice. The opponents are concerned about the quality of health advice in individual research papers, especially that in observational studies. Arguments both for and against giving advice in individual studies indicate a strong need for identifying and accessing health advice, for either practical use or quality evaluation purposes. However, current information services do not support the direct retrieval of health advice. Compared to other natural language processing (NLP) applications, health advice has not been computationally modeled as a language construct either. A new information service for directly accessing health advice should be able to reduce information barriers and to provide external assessment in science communication.

This dissertation work built an annotated corpus of scientific claims that distinguishes health advice according to its occurrence and strength. The study developed NLP-based prediction models to identify health advice in the PubMed literature. Using the annotated corpus and prediction models, the study answered research questions regarding the practice of advice giving in medical research literature. To test and demonstrate the potential use of the prediction model, it was used to retrieve health advice regarding the use of hydroxychloroquine (HCQ) as a treatment for COVID-19 from LitCovid, a large COVID-19 research literature database curated by the National Institutes of Health.

An evaluation of sentences extracted from both abstracts and discussions showed that BERT-based pre-trained language models performed well at detecting health advice. The health advice prediction model may be combined with existing health information service systems to provide more convenient navigation of a large volume of health literature. Findings from the study also show researchers are careful not to give advice solely in abstracts. They also tend to give weaker and non-specific advice in abstracts than in discussions. In addition, the study found that health advice has appeared consistently in the abstracts of observational studies over the past 25 years. In the sample, 41.2% of the studies offered health advice in their conclusions, which is lower than earlier estimations based on analyses of much smaller samples processed manually. In the abstracts of observational studies, journals with a lower impact are more likely to give health advice than those with a higher impact, suggesting the significance of the role of journals as gatekeepers of science communication.

For the communities of natural language processing, information science, and public health, this work advances knowledge of the automated recognition of health advice in scientific literature. The corpus and code developed for the study have been made publicly available to facilitate future efforts in health advice retrieval and analysis. Furthermore, this study discusses the ways in which researchers give health advice in medical research articles, knowledge of which could be an essential step towards curbing potential exaggeration in the current global science communication. It also contributes to ongoing discussions of the integrity of scientific output.

This study calls for caution in advice-giving in medical research literature, especially in abstracts alone. It also calls for open access to medical research publications, so that health researchers and practitioners can fully review the advice in scientific outputs and its implications. More evaluative strategies that can increase the overall quality of health advice in research articles are needed by journal editors and reviewers, given their gatekeeping role in science communication.

Access

Open Access

Share

COinS