Date of Award
Spring 5-15-2022
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematics
Advisor(s)
Leuschke, Graham J.
Keywords
branched cover, epimorphism category, hypersurface ring, matrix factorization, maximal Cohen-Macaulay modules
Subject Categories
Mathematics | Physical Sciences and Mathematics
Abstract
Let $S$ be a regular local ring and $f$ a non-zero non-invertible element of $S$. In this thesis, we study the notion of a matrix factorization of $f$ with $d\ge 2$ factors, that is, we consider tuples of square matrices $(\phi_1,\phi_2,\dots,\phi_d)$, with entries in $S$, such that their product is $f$ times an identity matrix of the appropriate size. These objects have been studied thoroughly in the case $d=2$ and were originally introduced by Eisenbud in his study of free resolutions of modules over hypersurface rings. Many of the results given in this thesis are extensions of well-known results in the $d=2$ case while others give new and unexpected properties which only arise when $d>2$.
First we investigate the structure of the category of matrix factorizations with $d\ge 2$ factors in Chapter 2. We show that the stable category of $d$-fold matrix factorizations is naturally triangulated and we give an explicit formula for the relevant suspension functor. In Chapters 3 and 4 we give two different module-theoretic descriptions of this category, which turn out to be equivalent under mild assumptions, extending results of Solberg and Kn\"orrer to the case of $d\ge 2$ factors.
The primary motivation for Chapter 4 is a theorem due to Kn\"orrer which states that the category of $2$-fold matrix factorizations of $f$ has finite representation type if and only if the same is true of $f+z^2 \in S[[ z ]]$, where $z$ is an indeterminate. We consider an analogue of this statement in the case of the equation $f+z^d \in S[[ z ]]$, $d\ge 2$. In particular, we show that there are, up to isomorphism, only finitely many indecomposable $d$-fold matrix factorizations of $f$ if and only if the hypersurface ring defined by $f+z^d$ has finite Cohen-Macaulay representation type.
In Chapter 5, we provide a generalization of Eisenbud's fundamental theorem on the connection between matrix factorizations of $f$ and maximal Cohen-Macaulay modules over the hypersurface ring defined by $f$. Namely, we give a correspondence between $d$-fold matrix factorizations of $f$ and sequences of $d-1$ surjective homomorphisms between the aforementioned modules.
Finally, Chapter 6 contains a formula for a tensor product of $d$-fold matrix factorizations in the sense of Yoshino as well as some criteria for decomposability of the construction.
Access
Open Access
Recommended Citation
Tribone, Tim, "Matrix Factorizations With More Than Two Factors" (2022). Dissertations - ALL. 1436.
https://surface.syr.edu/etd/1436