Document Type

Report

Date

4-8-2011

Keywords

Image segmentation, human visual system, Markov random fields, just-noticeable difference

Language

English

Disciplines

Computer Sciences

Description/Abstract

This paper presents a novel image segmentation algorithm driven by human visual system (HVS) properties. Quality metrics for evaluating the segmentation result, from both region-based and boundary-based perspectives, are integrated into an objective function. The objective function encodes the HVS properties into a Markov random fields (MRF) framework, where the just-noticeable difference (JND) model is employed when calculating the difference between the image contents. Experiments are carried out to compare the performances of three variations of the presented algorithm and several representative segmentation algorithms available in the literature. Results are very encouraging and show that the presented algorithms outperform the state-of-the-art image segmentation algorithms.

Source

local

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.