Author(s)/Creator(s)

Mino Bai

Document Type

Report

Date

2-1992

Keywords

Semantics

Language

English

Disciplines

Computer Sciences

Description/Abstract

We build general model-theoretic semantics for higher-order logic programming languages. Usual semantics for first-order logic is two-level: i.e., at a lower level we define a domain of individuals, and then, we define satisfaction of formulas with respect to this domain. In a higher-order logic which includes the propositional type in its primitive set of types, the definition of satisfaction of formulas is mutually recursive with the process of evaluation of terms. As result of this in higher-order logic it is extremely difficult to define an effective semantics. For example to define T p operator for logic program P, we need a fixed domain without regard to interpretations. In usual semantics for higher-order logic, domain is dependent on interpretations. We overcome this problem and argue that our semantics provides a more suitable declarative basis for higher-order logic programming than the usual general model semantics. We develop a fix point semantics based on our model. We also show that a quotient of the domain of our model can be the domain of a model for higher-order logic programs with equality.

Additional Information

School of Computer and Information Science, Syracuse University, SU-CIS-92-03

Source

local

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.