This paper examines the consequences of model misspecification using a panel data model with spatially auto correlated disturbances. The performance of several maximum likelihood estimators assuming different specifications for this model are compared using Monte Carlo experiments. These include (i) MLE of a random effects model that ignore the spatial correlation; (ii) MLE described in Anselin (1988) which assumes that the individual effects are not spatially auto correlated; (iii) MLE described in Kapoor et al. (2006) which assumes that both the individual effects and the remainder error are governed by the same spatial autocorrelation; (iv) MLE described in Baltagi et al. (2006) which allows the spatial correlation parameter for the individual effects to be different from that of the remainder error term. The latter model encompasses the other models and allows the researcher to test these specifications as restrictions on the general model using LM and LR tests. In fact, based on these tests, we suggest a pretest estimator which is shown to perform well in Monte Carlo experiments, ranking a close second to the true MLE in mean squared error performance.

Document Type

Working Paper




Panel data, Spatially auto correlated residuals, Pretest estimator, Maximum-likelihood estimation




Working Papers Series



Additional Information

Harvest from RePEc at


Metadata from RePEc

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Econometrics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.