This paper develops the adaptive elastic net GMM estimator in large dimensional models with many possibly invalid moment conditions, where both the number of structural parameters and the number of moment conditions may increase with the sample size. The basic idea is to conduct the standard GMM estimation combined with two penalty terms: the quadratic regularization and the adaptively weighted lasso shrinkage. The new estimation procedure consistently selects both the nonzero structural parameters and the valid moment conditions. At the same time, it uses information only from the valid moment conditions to estimate the selected structural parameters and thus achieves the standard GMM efficiency bound as if we know the valid moment conditions ex ante. It is shown that the quadratic regularization is important to obtain the efficient estimator. We also study the tuning parameter choice, with which we show that selection consistency still holds without assuming Gaussianity. We apply the new estimation procedure to dynamic panel data models, where both the time and cross section dimensions are large. The new estimator is robust to possible serial correlations in the regression error terms.

Document Type

Working Paper


Spring 1-2015


Adaptive Elastic Net, GMM, many invalid moments, large dimensional models, efficiency bound, turning parameter choice, dynamic panel




Working Papers Series


Econometrics | Economic Policy | Economics | Macroeconomics



Additional Information

Working paper no. 177

wp177.pdf (525 kB)
Accessible PDF version


Local input

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.