Document Type

Article

Date

10-14-2014

Keywords

Calcium, Forest soil, Hot-water extractable organic matter, Nuclear magnetic resonance spectroscopy, Phosphorus, Soil carbon, Soil organic matter

Language

English

Disciplines

Civil and Environmental Engineering

Description/Abstract

Calcium amendment can help improve forest sustainability in stands that have been impacted by chronic acid deposition. An important component of this improvement is the stimulation of the microbial activity that supports ecosystem nutrient cycling processes. To test the hypothesis that Ca treatment alters the structure and solubility of organic matter substrates, an important driver of microbial activity, we investigated the effect of wollastonite (CaSiO3) treatment on soil organic matter (SOM) and hot-water-extractable organic matter (HWEOM). We found a decrease in the HWEOM content of forest floor soils within two years of treatment with a high dosage of wollastonite (4250 kg Ca/ha), but not at a low dosage (850 kg Ca/ha). High-dosage treatment did not reduce the biodegradability of HWEOM. Hence, a high dose of CaSiO3 appears to reduce the solubility of organic matter in the forest floor but not the bioavailability of the extracted SOM. Nuclear magnetic resonance spectroscopy revealed no significant changes in the O-alkyl C content of SOM in response to wollastonite addition, but a reduction in the O-alkyl C content of HWEOM suggests that the extractability of carbohydrate structures was reduced by added CaSiO3. Phosphorous treatment, when performed in combination with Ca, also decreased the O-alkyl C content of HWEOM, but had no effect when performed without Ca. The reduced solubility of SOM after Ca treatment may have been the result of bridging between Ca2+ and negatively charged sites on SOM, as suggested in other studies. Also, high concentrations of Si in soil solution, due to dissolution of the wollastonite, likely resulted in oversaturated conditions with respect to SiO2 or kaolinite, perhaps leading to co-precipitation of soluble organic matter. Overall, our results suggest that added Ca and/or Si may react with SOM to reduce the accessibility of labile C forms to soil microbes.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.