Title

Multiblock Thermoplastic Polyurethanes For Biomedical and Shape Memory Applications

Date of Award

8-2012

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Biomedical and Chemical Engineering

Advisor(s)

Patrick T. Mather

Keywords

Biodegradable polymers, Shape memory polymers, Thermoplastic Polyurethanes

Subject Categories

Biomedical Engineering and Bioengineering

Abstract

Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications.

In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase morphology during the shape memory cycle.

Then, in Chapter 5, the role of Polyhedral oligosilsesquioxane (POSS) in suppressing enzymatic degradation of PCL-PEG TPUs is investigated. In vitro enzymatic hydrolytic biodegradation revealed that POSS incorporation significantly suppressed degradation of PCL-PEG TPUs. All TPUs were surface-eroded by enzymatic attack in which the chemical composition and the bulk mechanical properties exhibited little changes. A surface passivation mechanism is proposed to explain the protection of POSS-containing TPUs from enzymatic degradation.

Finally, Chapter 6 presents another POSS-based TPUs system with PLA-based polyol as the glassy soft block. Manipulation of the final thermal and mechanical properties is discussed in terms of different polyols and POSS used. The free recovery and the constrained recovery responses of the polymer films were demonstrated as a function of the prior "fixing" deformation temperature. In addition, this family of materials was capable of memorizing their Tg, where optimal recovery breadth and recovery stress were achieved when pre-deformation occurred right at Tg.

Access

Open Access

This document is currently not available here.

Share

COinS