Document Type
Article
Date
1-1-1997
Keywords
flow through porous media, external flows, mass transfer, heat transfer, boundary layers, permeability, numerical analysis
Disciplines
Chemical Engineering
Description/Abstract
The problem of determining the Nusselt number N, the nondimensional rate of heat or mass transfer, from an array of cylindrical particles to the surrounding fluid is examined in the limit of small Reynolds number Re and large Peclet number Pe. N in this limit can be determined from the details of flow in the immediate vicinity of the particles. These are determined accurately using a method of multipole expansions for both ordered and random arrays of cylinders. The results for N/Pe^1/3 are presented for the complete range of the area fraction of cylinders. The results of numerical simulations for random arrays are compared with those predicted using effective-medium approximations, and a good agreement between the two is found. A simple formula is given for relating the Nusselt number and the Darcy permeability of the arrays. Although the formula is obtained by fitting the results of numerical simulations for arrays of cylindrical particles, it is shown to yield a surprisingly accurate relationship between the two even for the arrays of spherical particles for which several known results exist in the literature suggesting thereby that this relationship may be relatively insensitive to the shape of the particles.
Recommended Citation
Sangani, Ashok S. and Wang, Wei, "Nusselt Number for Flow Perpendicular to Arrays of Cylinders in the Limit of Small Reynolds and Large Peclet Numbers" (1997). Biomedical and Chemical Engineering - All Scholarship. 34.
https://surface.syr.edu/bce/34
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Additional Information
Copyright 1997 Physics of Fluids. This article may be downloaded for personal use only. Any other use requires prior permission of the author and Physics of Fluids. The article may be found at http://dx.doi.org/10.1063/1.869277