Document Type

Article

Date

1-1-1999

Keywords

particle size, wave propagation, sound waves, inverse scattering problem, wave equations, acousitc wave propagation, acoustic wave absorption, inverse problems, disperse systems

Disciplines

Chemical Engineering

Description/Abstract

The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley @J. Acoust. Soc. Am. 51, 1545 ~1972!# for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations.

Additional Information

Copyright 1999 Physics of Fluids. This article may be downloaded for personal use only. Any other use requires prior permission of the author and Physics of Fluids. The article may be found at http://dx.doi.org/10.1063/1.869977

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS