Date of Award

May 2014

Degree Name

Master of Science (MS)

Department

Electrical Engineering and Computer Science

Advisor(s)

Qinru Qiu

Keywords

Brain State in a Box, High Performance Computing, Neuromorphic Computing, Optimization, Xeon Phi

Subject Categories

Engineering

Abstract

Neuromorphic computing systems refer to the computing architecture inspired by the working mechanism of human brains. The rapidly reducing cost and increasing performance of state-of-the-art computing hardware allows large-scale implementation of machine intelligence models with neuromorphic architectures and opens the opportunity for new applications. One such computing hardware is Intel Xeon Phi coprocessor, which delivers over a TeraFLOP of computing power with 61 integrated processing cores. How to efficiently harness such computing power to achieve real time decision and cognition is one of the key design considerations. This work presents an optimized implementation of Brain-State-in-a-Box (BSB) neural network model on the Xeon Phi coprocessor for pattern matching in the context of intelligent text recognition of noisy document images. From a scalability standpoint on a High Performance Computing (HPC) platform we show that efficient workload partitioning and resource management can double the performance of this many-core architecture for neuromorphic applications.

Access

Open Access

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.