Document Type







We obtain Lipschitz regularity results for a fairly general class of nonlinear first-order PDEs. These equations arise from the inner variation of certain energy integrals. Even in the simplest model case of the Dirichlet energy the inner-stationary solutions need not be differentiable everywhere; the Lipschitz continuity is the best possible. But the proofs, even in the Dirichlet case, turn out to relay on topological arguments. The appeal to the inner-stationary solutions in this context is motivated by the classical problems of existence and regularity of the energy-minimal deformations in the theory of harmonic mappings and certain mathematical models of nonlinear elasticity; specifically, neo-Hookian type problems.

Additional Information

This manuscript is from, for more information see


Harvested from

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.