Document Type







A question of Bergman asks whether the adjoint of the generic square matrix over a field can be factored nontrivially as a product of square matrices. We show that such factorizations indeed exist over any coefficient ring when the matrix has even size. Establishing a correspondence between such factorizations and extensions of maximal Cohen-Macaulay modules over the generic determinant, we exhibit all factorizations where one of the factors has determinant equal to the generic determinant. The classification shows not only that the Cohen-Macaulay representation theory of the generic determinant is wild in the tame-wild dichotomy, but that it is quite wild: even in rank two, the isomorphism classes cannot be parametrized by a finite-dimensional variety over the coefficients. We further relate the factorization problem to the multiplicative structure of the Ext-algebra of the two nontrivial rank-one maximal Cohen-Macaulay modules and determine it completely.

Additional Information

This manuscript is from, for more information see


Harvested from

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.